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The statistics of domain walls for ground states of the 2D Ising spin glass with +1
and −1 bonds are studied for L × L square lattices with L ≤ 48, and p = 0.5, where p
is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions.
When L is even, almost all domain walls have energy Edw = 0 or 4. When L is odd,
most domain walls have Edw = 2. The probability distribution of the entropy, Sdw , is
found to depend strongly on Edw . When Edw = 0, the probability distribution of |Sdw|
is approximately exponential. The variance of this distribution is proportional to L , in
agreement with the results of Saul and Kardar. For Edw = k > 0 the distribution of
Sdw is not symmetric about zero. In these cases the variance still appears to be linear in
L , but the average of Sdw grows faster than

√
L . This suggests a one-parameter scaling

form for the L-dependence of the distributions of Sdw for k > 0.
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1. INTRODUCTION

There continues to be a controversy about the nature of the Ising spin glass. The
Sherrington-Kirkpatrick model, (1) with its infinite-range interactions between the
spins, is described by the Parisi replica-symmetry breaking mean-field theory. (2,3)

To understand models with short-range interactions on finite-dimensional lattices,
however, it is necessary to include the effects of interfaces, which do not exist in a
well-defined way in an infinite-range model. The droplet model of Fisher and
Huse,(4–6) which starts from the domain-wall renormalization group ideas of
McMillan(7–9) and Bray and Moore,(10–12) and studies the properties of interfaces,
provides a very different viewpoint on the spin-glass phase.
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In two dimensions (2D), the spin-glass phase is not stable at finite tempera-
ture. Because of this, it is necessary to treat cases with continuous distributions
of energies (CDE) and cases with quantized distributions of energies (QDE) sep-
arately. (11,13)

In three or more space dimensions, where a spin-glass phase is believed to
occur at finite temperature T , the general framework of thermodynamics requires
that the CDE and the QDE should be treated on the same footing. The way this
comes about is that in these cases the typical domain wall energy increases as a
positive power of the size of the lattice. Thus the quantization energy becomes a
negligible fraction of the domain wall energy for large lattices. All bond distribu-
tions behave in a qualitatively similar way, except that the QDE have finite ground
state entropies. (6,11)

Amoruso, Hartmann, Hastings and Moore(14) have recently proposed that in
2D there is a relation

dS = 1 + 3

4(3 + θE )
, (1)

where dS is the fractal dimension of domain walls, and θE is the exponent which
characterizes the scaling of the domain wall energy with size. For the CDE case,
the existing numerical estimates of dS and θE satisfy Eq. (1). However, it is
unclear if Eq. (1) should continue to be correct when the scaling exponent for spin
correlations, η, is not zero. For the QDE, the current estimates (15,16) find η ≈ 0.14.

In three dimensions it is known from the droplet theory, (5,6,12) that for the
QDE, which have a positive entropy at T = 0, in the spin-glass phase

dS = 2θS. (2)

θS is the exponent for the scaling of domain wall entropy with size. Thus, for the
QDE, Eq. (1) provides a relation between the scaling of the energy and the entropy
of domain walls. It is not known how to calculate dS directly for the QDE case,
so we need to use Eq. (2) to check Eq. (1) in that case. One might hope that this
relation would also hold in 2D, even though the spin-glass order only occurs at
T = 0.

For the QDE, it is known that θE = 0. (13,17) Then using Eq. (1) gives dS = 5/4,
or using Eq. (2), θS = 5/8. The calculation of θS by Saul and Kardar, (18,19) found
θS = 0.49 ± 0.02. Since dS cannot be less than 1, this result was interpreted as a
strong indication that θS = 1/2.

In this work we will find that Eq. (1) may not work for the QDE case in 2D. It
appears, however, that Eq. (2) is still correct in 2D, except when the domain wall
energy, Edw, is zero. The actual behavior of the QDE probability distributions
under finite-size scaling turns out to be more subtle than what has been assumed
until recently. (20,21) As pointed out by Wang, Harrington and Preskill, (22) domain
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walls of zero energy which cross the entire sample play a special role when the
energy is quantized.

We will analyze data for the Edw and for the domain wall entropy, Sdw, for
the ground states (GS) of 2D Ising spin glasses obtained using a slightly modified
version of the computer program of Galluccio, Loebl and Vondrák, (23) which is
based on the Pfaffian method. The Pfaffians are calculated using a fast exact
integer arithmetic procedure, coded in C++. Thus, there is no roundoff error in
the calculation until the double precision logarithm is taken to obtain Sdw. This
extended precision is essential, in order to obtain meaningful results for entropy
differences at large L . An earlier version of the domain wall entropy calculation, (21)

using data provided by S. N. Coppersmith, (24) was limited to small L × L lattices
with even L and came to somewhat different conclusions.

We will demonstrate that for L × L square lattices the Edwards-Anderson(25)

(EA) model with a ±J bond distribution has a strong correlation between Edw

and Sdw for the GS domain walls. Because of this correlation, we will need to treat
domain walls of different energies as distinct classes. We will find that the scaling
parameter identified by Saul and Kardar (18,19) is the one associated with domain
walls having Edw = 0. It is not, however, the one which controls the dominant
behavior for large L .

The Hamiltonian of the EA model for Ising spins is

H = −
∑

〈i j〉
Ji jσiσ j , (3)

where each spin σi is a dynamical variable which has two allowed states, +1 and
−1. The 〈i j〉 indicates a sum over nearest neighbors on a simple square lattice of
size L × L . We choose each bond Ji j to be an independent identically distributed
quenched random variable, with the probability distribution

P(Ji j ) = pδ(Ji j + 1) + (1 − p)δ(Ji j − 1), (4)

so that we actually set J = 1, as usual. Thus p is the concentration of antiferro-
magnetic bonds, and (1 − p) is the concentration of ferromagnetic bonds.

2. GROUND STATE DOMAIN WALLS

We define the GS entropy to be the natural logarithm of the number of ground
states. For each sample the GS energy and GS entropy were calculated for the four
combinations of periodic (P) and antiperiodic (A) toroidal boundary conditions
along each of the two axes of the square lattice. We will refer to these as PP,
PA, AP and AA. In the spin-glass region of the phase diagram, the variation of
the sample properties for changes of the boundary conditions is small compared
to the variation between different samples of the same size, (19) except when p
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is close to the ferromagnetic phase boundary and the ferromagnetic correlation
length becomes comparable to L .

We define domain walls for the spin glass as it was done in the seminal work
of McMillan. (8) We look at differences between two samples with the same set of
bonds, and the same boundary conditions in one direction, but different boundary
conditions in the other direction. Thus, for each set of bonds we obtain domain
wall data from the four pairs (PP,PA), (PP,AP), (AA,PA) and (AA,AP). The reader
should remember that the term “domain wall,” as used in this work, refers only
to this procedure. Saul and Kardar (18,19) follow the same procedure used in this
work, but use the term “defect” instead of “domain wall.”

The domain-wall renormalization group of McMillan(7) is based on the idea
that we are studying an effective coupling constant which is changing with L . For
the CDE case we can use the energy as the coupling constant. For the quantized
energy case, what we need to do is a slight generalization of this idea. We should
think of the coupling constant as the free energy at some infinitesimal temperature.
When we do this, the entropy contributes to the coupling constant. As we will see,
the distribution of Edw rapidly becomes essentially independent of L as L becomes
large, except that there are separate distributions for even L and odd L . Under
these conditions, it becomes possible to treat each value of Edw as a separate class,
representing a different coupling constant.

The domain wall entropy, Sdw, is defined, by analogy to Edw, to be the
difference in the GS entropy when the boundary condition is changed along one
direction from P to A (or vice versa), with the boundary condition in the other
direction remaining fixed. [Sdw], where the brackets [ ] indicate an average over
random samples of the Ji j , is expected to increase as a positive power of L for any
Edw. Therefore, these coupling constants must eventually, at large enough L , be
controlled by [Sdw] for any T > 0. Of course, the value of L which is needed for
this to happen depends in T . The droplet model assumes that all these coupling
constants, except for the Edw = 0 case which has a special symmetry, are equal.

As long as Edw > 0, the two boundary conditions which we are comparing
are not on an equal footing. As Wang, Harrington and Preskill (22) express the
situation, the Edw > 0 domain wall does not destroy the topological long-range
order. However, in the Edw = 0 case the two boundary conditions are on an equal
footing, and the topological order is destroyed. Therefore the Edw = 0 class of
domain walls can be expected to behave in a special way, which differs from the
prediction of the droplet model.

It is natural to wonder if topological long-range order can be related
to replica-symmetry breaking, and if the Edw = 0 domain walls can be de-
scribed by the replica-symmetry breaking theory. We will not attempt to do this
here.

It is important to realize that the meaning of a domain wall is very different
when the GS entropy is positive, as in the model we study here, as compared to
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the standard case of a doubly degenerate ground state. In the standard case one
can identify a line of bonds which forms a boundary between regions of spins
belonging to the two different ground states. It is not possible, in general, to do
that when there are many ground states. Despite this, we continue to use the term
“domain wall.”

When L is even, the energy difference, Edw, for any pair must be a multiple
of 4. When L is odd, Edw is 4n + 2, where n is an integer. (11) The sign of Edw for
a pair is essentially arbitrary for p = 1/2. Thus we can, without loss of generality,
choose all of the domain-wall energies to be non-negative.

3. NUMERICAL RESULTS

Our calculated statistics for Edw at p = 0.5, as a function of L , for even L
and odd L are given in Table I and Table II, respectively. For each L , 500 distinct
random configurations of bonds were studied. We obtain four McMillan pairs for
each random sample, so we have 2000 sets of Edw and Sdw at each L . For even
L > 10 it turns out, crudely speaking, that about 77% of the time we find Edw = 0,
and 23% of the time Edw = 4. For odd L > 20, Edw = 2 about 98.5% of the time.
No domain walls with energies greater than 8 were observed at any L for these
values of p. This, however, does not have much fundamental significance. The
probability distribution for Edw is also a weak function of p, (21) and a strong
function of the aspect ratio of the lattice. (28) Our results are consistent with the
results of Amoruso et al. (13)

It is interesting to note that Wang, Harrington and Preskill (22) use an analytical
argument to predict that f0, the fraction of Edw = 0 walls, is approximately 0.75,
independent of p, in the spin-glass regime. However, the value of f0 depends
strongly on the aspect ratio of the lattice, (28,29) and it is not clear why this analytical

Table I. Domain wall energy statistics for p = 0.5 with

even L.

L n0 n4 n8 f0 f4

8 1467 530 3 0.7335 0.265
12 1542 458 0 0.771 0.229
16 1515 484 1 0.7575 0.242
24 1578 422 0 0.789 0.211
32 1530 470 0 0.765 0.235
48 1546 450 4 0.773 0.225

Note. The number of random bond configurations studied for
each L was 500, and there are four McMillan pairs for each of
these. ni is the number of domain walls of each type having
Edw = k. fk is the fraction of domain walls having Edw = k.
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Table II. Domain wall energy statistics for

p = 0.5 with odd L.

L n2 n6 f2

7 1944 56 0.972
11 1960 40 0.980
15 1957 43 0.9785
21 1973 27 0.9865
29 1967 33 0.9835
41 1973 27 0.9865

Note. Column labels as in Table I.

argument should apply only when the aspect ratio is equal to one. It is also
completely unclear to this author where the argument uses the fact that Edw = 0
domain walls can only occur when L is even.

Estimating the statistical uncertainties in the data precisely is not trivial, due
to the fact that the values of Edw obtained from the same set of bonds with the
four different pairs of boundary conditions are not statistically independent. (26)

An upper bound on the statistical uncertainties is obtained by counting the number
of samples, rather than the number of McMillan pairs of boundary conditions.

The probability distribution of Sdw for the cases where Edw = 0 should be
symmetric about 0, and our statistics are consistent with this. If we look at the
L-dependence of [|Sdw|], shown in Fig. 1(a), we find a scaling exponent

θS(0) = 0.500 ± 0.020 (5)

for Edw = 0. The result of Saul and Kardar, (18,19) obtained by looking at the
distribution of Sdw for all values of Edw combined, was θS = 0.49 ± 0.02. To
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Fig. 1. (color online) (a) Average |Sdw| vs. L for the Edw = 0 domain walls, log-log plot. The error
bars indicate one standard deviation. (b) Histogram of |Sdw| for Edw = 0 with L = 48. The vertical
scale is logarithmic.
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Fig. 2. (color online) (a) Average Sdw vs. L for the Edw > 0 domain walls, log-log plot. The error
bars indicate one standard deviation. (b) Variance of Sdw vs. L , log-log plot.

obtain this exponent, Saul and Kardar fit their data at small values of Sdw. When
L is even, which was the case for all of their data, this part of the data belongs
almost entirely to the Edw = 0 component. (21)

The calculated means and skewness of these essentially symmetric distri-
butions for Sdw is, naturally, consistent with zero, but their kurtosis is not. The
reason for this is shown in Fig. 1(b), which is a histogram for |Sdw| of Edw = 0
when L = 48. We see that the distribution is approximately exponential, and there-
fore far from Gaussian. The computed kurtosis of this L = 48 distribution is 2.0,
somewhat less than the value of 3 which would be found for an exact two-sided
exponential distribution. The basic shape of these distributions is similar for the
smaller values of L , with the width of each distribution given by the square root
of its variance.

When Edw is not zero, the relative signs of Edw and Sdw are not arbitrary.
Having chosen Edw to be nonnegative, we then find that, when Edw is positive, it
turns out that Sdw is usually positive. In Fig. 2(a) we show the behavior of [Sdw]
for the cases where Edw = k, with k = 2, 4 and 6, as a function of L . We see
that for k > 0, the average value of Sdw(L) grows approximately as L0.58. More
precisely, least-squares fits to the form

[Sdw(L)] = ALθS (6)

gives the results for θS(k) shown in Table III. The result for k = 6 is rather
uncertain, due to the small number of examples of this type. These results are
consistent with the prediction of droplet theory, (6) that θS should be independent
of k (aside from the k = 0 case, which is clearly exceptional). However, there
also appears to be a tendency for θS(k) to increase as k increases. Therefore, the
possibility that θS → 5/8 as k → ∞, which would be consistent with Eq. (1),
cannot be excluded by these data.
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Because of the large GS degeneracy in the ±J Ising spin glass, one does not
know how to compute dS directly for this model. However, if we use the droplet
model prediction, that there is a single value for θS , the result is not consistent
with Eq. (1). The author’s opinion is that Eq. (1) must be generalized when η > 0.

As shown by Saul and Kardar, (18,19) the variance of Sdw when Edw = 0
increases with L in approximately a linear fashion. Calculating the variance of
these distributions, and using linear least squares fits on the log-log plot shown in
Fig. 2(b), we find that assuming the increase of the variance with L is a power law
gives the results shown in Table III. These numbers are reasonably consistent with
the hypothesis that the scaling exponent for the variance of the Sdw distributions is
equal to 1, independent of Edw. It is also interesting to observe that the magnitude
of the variance, and not merely the slope of the fit, seems to be independent of
Edw. Except in the special Edw = 0 case, 2θS is greater than 1. Therefore, the
exponent dS should be controlled by θS , as predicted by Eq. (2).

4. SCALING OF THE DISTRIBUTIONS

In Fig. 3 we show histograms for the Sdw distributions for Edw = 2 at L = 41
and Edw = 4 at L = 48. In contrast to the Edw = 0 case, the skewness and kurtosis
of the Sdw distributions for Edw > 0 are both small. It is possible that these
distributions become Gaussian in the large L limit. However, the author is not
aware of any reason why this must happen.

The basic shapes of the histograms in Fig. 3(a) and Fig. 3(b) appear to be
the same. Since 2θS > 1, it seems that the histogram for the Edw = 4 case can
be mapped onto the histogram for the Edw = 2 case at a larger L . A way of
expressing this is that for large L the Sdw histograms for Edw = k > 0 should
obey one-parameter scaling in the dimensionless variables

gk(L) = [Sdw]2

[(Sdw)2] − [Sdw]2
. (7)

Table III. Scaling exponents for the first and

second cumulants of the Sdw distributions.

Edw θS φS

0 0.500 ± 0.020 0.992 ± 0.047
2 0.565 ± 0.019 0.972 ± 0.051
4 0.584 ± 0.015 1.107 ± 0.047
6 0.617 ± 0.062 0.85 ± 0.28

Note. θS is the scaling exponent for [Sdw], and φS is the
scaling exponent for the variance of (Sdw).
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Fig. 3. Histograms of Sdw for (a) Edw = 2 with L = 41 and (b) Edw = 4 with L = 48. The vertical
scales are logarithmic.

If θS is independent of k, then, assuming φS = 1,

gk(L) = (L/Lk)2θS−1, (8)

where we define Lk by the condition gk(Lk) = 1.
What we have learned is that in this model there appear to be two distinct

classes of domain walls, the Edw = 0 domain walls and the Edw > 0 domain walls.
As we have seen, the Edw > 0 domain walls behave in a way which appears to be
essentially consistent with the predictions of the droplet model, but the Edw = 0
domain walls do not. This difference in behavior is due to the symmetry of the
Edw = 0 case, which forces the average Sdw to be zero.

For an Edw > 0 domain wall, a large contribution to Sdw comes from the shift
in the average GS entropy with the shift in the GS energy. (20) What remains to be
understood is why [Sdw] should scale with L in the way predicted by the droplet
model. The conventional derivation of the droplet model (4) uses the assumption
that the GS is unique, up to a reversal of the entire state, in an essential way. What
follows immediately from this is that η = 0. An extension of the droplet model to
the more general case was given by Fisher and Huse. (6) However, the author hopes
that by now he has convinced the reader that a better understanding of the η > 0
case is needed.

5. SUMMARY

We have studied the statistics of domain walls for ground states of the 2D
Ising spin glass with +1 and −1 bonds for L × L square lattices with L ≤ 48, and
p = 0.5, where p is the fraction of negative bonds, using periodic and/or an-
tiperiodic boundary conditions, for both even and odd L . Under these conditions,
most domain walls have an energy Edw < 8. The probability distribution of the
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entropy, Sdw, is found to depend strongly on Edw, but it appears possible to pa-
rameterize this dependence in a simple way. The results for Sdw do not appear
to agree quantitatively with the prediction of Amoruso, Hartmann, Hastings and
Moore, (14) Eq. (1). Our results for [|Sdw|] when Edw = 0 agree with those of Saul
and Kardar, (18,19) but in addition we find that the distributions are close to being
exponential in that case, even in the limit of large L . Due to the special role of
the Edw = 0 domain walls, we can understand the difference between the scaling
exponent found by Saul and Kardar and the prediction of the droplet model.
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The author thanks J. Vondrák for providing a copy of his computer code, and
for help in learning how to use it. M. Kardar and L. Saul provided unpublished
details of their calculation. He is grateful to S. L. Sondhi, A. K. Hartmann, D.
F. M. Haldane, D. A. Huse, J. Cardy and M. A. Moore, for helpful discussions,
and to the Physics Department of Princeton University for providing use of the
computers on which the data were obtained.

REFERENCES

1. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35:1972 (1975).
2. G. Parisi, J. Phys. A 13:1101, 1887 and L115 (1980).
3. G. Parisi, Phys. Rev. Lett. 50:1946 (1983).
4. D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56:1601 (1986).
5. D. A. Huse and D. S. Fisher, Phys. Rev. Lett. 57:2203 (1986).
6. D. S. Fisher and D. A. Huse, Phys. Rev. B 38:386 (1988).
7. W. L. McMillan, J. Phys. C 17:3179 (1984).
8. W. L. McMillan, Phys. Rev. B 29:4026 (1984).
9. W. L. McMillan, Phys. Rev. B 31:340 (1985).

10. A. J. Bray and M. A. Moore, Phys. Rev. B 31:631 (1985).
11. A. J. Bray and M. A. Moore, Heidelberg Colloquium on Glassy Dynamics, J. L. van Hemmen and

I. Morgenstern, Ed., (Springer, Berlin, 1986), pp. 121–153.
12. A. J. Bray and M. A. Moore, Phys. Rev. Lett. 58:57 (1987).
13. C. Amoruso, E. Marinari, O. C. Martin and A. Pagnani, Phys. Rev. Lett. 91:087201 (2003).
14. C. Amoruso, A. K. Hartmann, M. B. Hastings and M. A. Moore, cond-mat/0601711.
15. H. G. Katzgraber and L. W. Lee, Phys. Rev. B 71:134404 (2005).
16. J Poulter and J. A. Blackman, Phys. Rev. B 72:104422 (2005).
17. A. K. Hartmann and A. P. Young, Phys. Rev. B 64:180404(R) (2001).
18. L. Saul and M. Kardar, Phys. Rev. E 48:R3221 (1993).
19. L. Saul and M. Kardar, Nucl. Phys. B 432:641 (1994).
20. R. Fisch, J. Stat. Phys., to appear (2006), cond-mat/0502605.
21. R. Fisch, cond-mat/0508468.
22. C. Wang, J. Harrington and J. Preskill, Ann. Phys. (N.Y.) 303:31 (2003).
23. A. Galluccio, M. Loebl and J. Vondrák, Phys. Rev. Lett. 84:5924 (2000).
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